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« 2 SLPM N, carrier gas flow Is initiated to permeate side; 1 SLPM CO, flow Is initiated to retentate side of DTA
« Counter current flow and high carrier gas flowrate ensures diffusion gradient is maintained

* Matheson digital mass flow sensors regulate and read mass flow rates with a computationally determined mass balance
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Instead of pure CO2 gas, apparatus design, process design
* Fick’s First Law: dC B
i >+ Future Work
* D, Diffusivity Constant: D = Dye kBl

* Investigating impact of packed soil on diffusion capabillities of PTFE membrane

 Thermal energy balance for heat exchanger length, dz:

dT * Analyzing diffusion and waterproofing capabilities of membrane in cool and freezing conditions
meE = —hdn(T(dz) — T(zin))

 |Inducing heat via highly resistant material such as araphite within structure as opposed to heated inlet gas
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